NEWS

Previous News

24/4/2024

24/4/2024

Liming Showcase Innovations at MiningWorld Russia 2024

MiningWorld Russia is an internationally recognized exhibition dedicated to the mining and extractive industries. As a business platform, the exhibition brings together equipment and technology manufacturers with buyers from Russian mining companies, mineral processors and wholesalers interested in purchasing the latest solutions for the mining industry.

 01.jpg

Liming will take part in the MiningWorld Russia 2024 exhibition with our newest stone crushers and mills. Welcome to our booth to find out more details!


Date: April 23-25, 2024

Booth No.: C1009

Venue: Crocus Expo IEC, Pavilion 1, Hall 3, Moscow


12/3/2024

12/3/2024

With New Investment, Iron Ore Processing Project Marks a Breakthrough

Recently, it has been reported that Guinea's Simandou iron ore project has successfully secured a $15 billion financing, sparking widespread attention in the global mining industry. As manufacturers of iron ore processing equipment, we are filled with confidence and see tremendous development opportunities in this.

The Simandou iron ore project has long been under the spotlight due to its abundant resource reserves and potential development value. The successful financing of this project will inject new momentum into the mining industry in Guinea and the entire region. As suppliers of processing equipment, we will actively participate, providing high-quality processing equipment and comprehensive technical support to the project.

1-230GG6092Y06.jpg

The arrival of this investment signifies a new round of development opportunities for the iron ore processing industry. We will increase research and development investment, continuously improve the intelligence and automation level of equipment to meet the project's demand for efficient production and energy conservation. Additionally, we will enhance cooperation with the project stakeholders, offering customized solutions to tailor the most suitable production line, maximizing the value of resources.

The vigorous development of the iron ore processing project will drive the prosperity of the entire industry chain. Besides equipment provision, we will also actively engage in technical training and after-sales services, assisting the project stakeholders in enhancing production efficiency, reducing operating costs, and achieving sustainable development.

As manufacturers of iron ore processing equipment, we will continue to keep pace with the project's development, innovate continuously, and provide customers with higher-quality products and services, jointly creating a bright future for the iron ore processing industry.

ore-b-2.jpg




29/3/2023

29/3/2023

Heap leaching gold extraction process

[Process introduction] : Gold heap leaching process is to break low-grade gold ore to a certain particle size (or granulation), pile it on a leakproof bottom mat made of asphalt, concrete or plastic materials, spray with low-concentration cyanide, alkaline solution, non-toxic solvent or dilute sulfuric acid and other solutions on the mine heap to dissolve gold, and the gold-containing solution percolates out from the mine heap. Then the gold is recovered by activated carbon adsorption or zinc powder replacement precipitation.

1-230GG60T4X9.jpg

[Application field] : Gold heap leaching is often used to develop small ore bodies or low-grade gold deposits, or both, and cannot be exploited by conventional methods.

ore-b-l.jpg


22/2/2024

22/2/2024

Optimizing Material Processing with Mobile Crushers: Tips and Techniques

Unlock the full potential of your mobile crushers with these expert tips and techniques for optimizing material processing efficiency:

  1. Preventive Maintenance: Implement a proactive maintenance schedule to keep your mobile crusher in top condition. Regular inspections, lubrication, and component replacements can prevent costly downtime and ensure optimal performance.

  2. Proper Setup and Calibration: Ensure proper setup and calibration of your mobile crusher for efficient material processing. Adjustments to settings such as crusher speed, conveyor height, and feed rate can significantly impact throughput and product quality.

  3. Material Selection and Preparation: Choose the right material for your application and ensure proper preparation before feeding it into the crusher. Remove contaminants, segregate oversized materials, and control the feed rate to optimize crushing efficiency and minimize wear on equipment.

  4. Optimized Crushing Chamber: Adjust the crusher's chamber settings to suit the characteristics of the processed material. Experiment with different settings to achieve the desired particle size distribution while maximizing throughput and minimizing energy consumption.

  5. Monitoring and Control Systems: Utilize advanced monitoring and control systems to track key performance indicators in real-time. Monitor parameters such as crusher load, feed rate, and product size distribution to identify potential bottlenecks and optimize crusher operation accordingly.

  6. Material Handling and Conveyor Systems: Streamline material handling processes and optimize conveyor systems to minimize downtime and maximize throughput. Proper belt tensioning, alignment, and maintenance are essential for smooth operation and efficient material flow.

  7. Dust Suppression and Environmental Controls: Implement effective dust suppression measures and environmental controls to ensure compliance with regulatory requirements and maintain a safe working environment. Dust suppression systems, enclosure designs, and ventilation strategies can minimize dust emissions and improve operator safety.

  8. Training and Education: Invest in comprehensive training programs for operators and maintenance personnel to ensure proper equipment operation and maintenance practices. Well-trained staff can identify potential issues early, troubleshoot problems effectively, and optimize crusher performance for maximum productivity.

  9. Continuous Improvement: Foster a culture of continuous improvement by regularly reviewing and analyzing crusher performance data. Identify areas for optimization, implement corrective actions, and monitor the impact on overall efficiency to drive continuous improvement initiatives.

  10. Collaboration with Suppliers: Work closely with equipment suppliers and industry experts to stay informed about the latest developments and best practices in mobile crusher technology. Collaborate on equipment selection, optimization strategies, and performance improvement initiatives to achieve mutual success.

  11. 250tph nickel ore mobile crushing line in New Caledonia

By implementing these tips and techniques, you can optimize material processing with your mobile crushers, improve productivity, and maximize return on investment in your crushing operations.


24/2/2024

24/2/2024

Comparing Jaw Crushers: Which Model Is Right for You

Are you in the market for a jaw crusher but unsure which model suits your needs best? This comprehensive guide breaks down the key factors to consider when comparing different jaw crusher models, helping you make an informed decision.

  1. Performance Metrics: Compare factors such as maximum feed size, capacity, and reduction ratio across various models to assess their performance capabilities.

  2. Operating Costs: Evaluate the energy consumption, maintenance requirements, and wear parts costs associated with each jaw crusher model to determine the most cost-effective option over its lifespan.

  3. Technology and Features: Investigate the innovative features and technologies integrated into each model, such as hydraulic adjustment systems, anti-friction bearings, and automated settings, to understand their impact on performance and productivity.

  4. Application Suitability: Consider the specific materials and applications for which each jaw crusher model is designed. Some crushers may excel in the primary crushing of hard rock, while others are optimized for the secondary or tertiary crushing of softer materials.

  5. Size and Mobility: Determine whether a stationary or mobile jaw crusher better suits your operational requirements. Mobile crushers offer flexibility and maneuverability, while stationary crushers may provide higher production capacities and stability.

  6. Environmental Considerations: Assess the environmental implications of each jaw crusher model, including noise levels, dust generation, and emissions, to ensure compliance with regulatory standards and minimize environmental impact.

  7. User-Friendly Design: Look for user-friendly features such as easy access to maintenance points, intuitive control systems, and safety enhancements to enhance operator convenience and safety.

  8. Customer Support and Service: Research the reputation of the manufacturer or supplier, including their after-sales support, spare parts availability, and service network, to ensure ongoing reliability and support throughout the lifespan of your jaw crusher.

  9. image.png

  10. image.png

  11. image.png

By carefully comparing these factors across different jaw crusher models, you can confidently select the model that best aligns with your operational requirements, budget constraints, and long-term goals. Remember to prioritize reliability, performance, and efficiency to maximize the return on your investment in a jaw crusher.


14/12/2023

14/12/2023

In-Depth Analysis of Jaw Crusher Types and Selection Strategies for Success

Jaw crushers play a crucial role in various industries, including mining, construction, and recycling, as they are fundamental in the primary crushing process. The efficiency and success of any crushing operation hinge on the proper selection of jaw crusher types and strategic decision-making. In this article, we will delve into an in-depth analysis of jaw crusher types, highlighting their characteristics, advantages, and considerations for successful selection.

I. Understanding Jaw Crusher Types:

A. Single Toggle Jaw Crusher:

Simple design and construction.

Less maintenance due to fewer moving parts.

Suitable for hard and abrasive materials.

Limited capacity compared to double toggle crushers.

B. Double Toggle Jaw Crusher:

Robust construction with two oscillating motions.

Higher capacity and efficiency.

Requires more maintenance due to additional moving parts.

Ideal for larger feed sizes and high production rates.

C. Blake Jaw Crusher:

Historical significance as the first widely used jaw crusher.

Simple structure with a fixed jaw and a moving jaw.

Suitable for medium-hard to hard materials.

D. Universal Jaw Crusher:

Versatility with adjustable discharge and inlet.

Adaptable for various applications.

Well-suited for recycling and aggregate production.

2312141.jpg2312142.jpg

II. Key Selection Strategies:

A. Material Characteristics:

Hardness, abrasiveness, and compressive strength.

Particle size distribution and moisture content.

Understanding the material's impact on wear and maintenance.

B. Operational Requirements:

Desired capacity and throughput.

Optimal feed size and reduction ratio.

Consideration of downstream processes and final product specifications.

C. Maintenance and Serviceability:

Accessibility for routine maintenance and repairs.

Availability of spare parts and ease of replacement.

Predictive maintenance strategies to enhance reliability.

D. Environmental and Safety Considerations:

Dust control measures for worker safety.

Noise reduction strategies.

Compliance with environmental regulations.


The in-depth analysis of jaw crusher types and selection strategies is paramount for the success of crushing operations. Engineers and decision-makers must carefully weigh the characteristics of different jaw crushers against the specific requirements of their applications. Through thoughtful selection and strategic planning, professionals can ensure optimal performance, reliability, and longevity of jaw crushers in diverse industrial settings.


22/11/2023

22/11/2023

Choosing the Right Mobile Crusher for Your Project: Factors to Consider

Choosing the right mobile crusher for your project involves several important factors to ensure that the equipment meets your specific needs and delivers optimal performance. Here are some key considerations:

231122.jpg

  1. Type of Material:

    • Identify the type of material you will be processing (e.g., limestone, granite, concrete, etc.). Different materials have varying hardness and abrasiveness, affecting the type of crusher and configuration required.

  2. Capacity Requirements:

    • Determine the required production capacity in terms of tons per hour or cubic meters per hour. Ensure that the chosen crusher can handle the anticipated volume of material.

  3. Size of Material:

    • Consider the size of the material that the crusher will be processing. Crushers are designed for different feed sizes, and selecting a crusher with the appropriate opening size ensures efficient crushing.

  4. Crushing Mechanism:

    • Mobile crushers can employ different crushing mechanisms, such as impact, jaw, or cone crushing. The choice depends on the type of material and the desired end product. For example, jaw crushers are suitable for primary crushing, while impact crushers are effective for secondary or tertiary crushing.

  5. Mobility and Portability:

    • Evaluate the mobility requirements of your project. If your operation involves moving the crushing equipment between different sites, a mobile crusher with good mobility features (such as tracks or wheels) is essential.

  6. Operating Costs:

    • Consider the operating costs associated with the crusher, including fuel consumption, maintenance, and parts replacement. Opt for a model that offers a good balance between initial cost and long-term operating expenses.

  7. Ease of Maintenance:

    • Look for a mobile crusher that is easy to maintain. Quick and straightforward maintenance procedures can minimize downtime and contribute to the overall efficiency of the crushing process.

  8. Environmental Considerations:

    • Consider the environmental impact of your project. Some crushers are designed with features to minimize dust, noise, and emissions. Compliance with local environmental regulations may also be a factor.

  9. Optional Features and Configurations:

    • Explore additional features and configurations offered by different models. This may include options such as a pre-screen, magnetic separator, or onboard conveyors. Choose the features that enhance the efficiency of your specific application.

  10. Supplier Reputation and Support:

    • Select a reputable supplier with a track record of providing reliable and durable equipment. Consider the availability of spare parts, technical support, and service options.

  11. Transportation Regulations:

    • Check transportation regulations in the regions where the crusher will be used. Some crushers may require special permits or considerations for transport.

  12. Future Expansion:

    • Anticipate future needs and consider whether the chosen crusher can be easily upgraded or modified to meet changing requirements.

By carefully considering these factors, you can choose a mobile crusher that aligns with your project's requirements and ensures efficient and cost-effective crushing operations.


18/11/2023

18/11/2023

How Mobile Screens Enhance Material Sorting and Grading

Mobile screens play a crucial role in material sorting and grading across various industries, including recycling, mining, construction, and agriculture. These screens, often referred to as mobile screening plants, are equipped with vibrating screens or trommel screens that efficiently separate materials based on size, shape, and composition. Here are several ways in which mobile screens enhance material sorting and grading:

image.png

Size Separation:

Mobile screens use different mesh sizes to separate materials based on their particle size. This is particularly important in industries like mining and construction, where materials need to be sorted for further processing.

Efficient Sorting:

Mobile screens facilitate the sorting of materials by efficiently separating them into different categories. This is essential in recycling operations, where various materials like paper, plastic, glass, and metals need to be sorted for recycling.

Trommel Screens for Versatility:

Trommel screens are often used in mobile screening plants. They consist of a rotating drum with various-sized holes. As the drum rotates, smaller materials fall through the holes, while larger materials move along the drum. Trommel screens are versatile and can handle a wide range of materials.

Vibration for Enhanced Separation:

Vibrating screens use vibration to sort and grade materials. The vibrations help in separating materials based on their size and ensure a more efficient screening process. This is beneficial in applications where materials may be sticky or prone to clogging.

Multi-Deck Configurations:

Many mobile screens have multiple decks or layers of screening. This allows for the simultaneous sorting of materials into different size fractions. Multi-deck configurations enhance the precision of material grading.

Adjustable Settings:

Mobile screens often come with adjustable settings, allowing operators to customize the screening process based on the specific requirements of the materials being processed. This flexibility is crucial for achieving optimal sorting and grading results.

Portability and Accessibility:

The mobile nature of these screening plants allows them to be easily transported to different locations, making them suitable for various job sites. This portability is especially valuable in construction and mining projects where materials need to be sorted on-site.

Increased Productivity:

Mobile screens contribute to increased productivity by automating and speeding up the sorting and grading processes. This is particularly important in industries where efficiency and throughput are critical factors.

Mobile screens enhance material sorting and grading by offering flexibility, efficiency, and customization in various industrial applications. They play a vital role in recycling operations, mining, construction, and other industries where the separation of materials based on specific characteristics is essential.


  • Home
  • Prev
  • 12345···
  • Last
Clicky